
Unit Testing in Typescript/NodeJS
Unit testing is a vital part of writing stable backend software. It's even more
important in a dynamic language environment like NodeJS, as it doesn't have a
strict type system to catch a lot of seemingly simple errors.

A number of different testing frameworks exist, and each have their own
quirks.

Basic Structure of Jest Tests
Jest is a test and mocking framework built in and for NodeJS. Typescript
compatibility has been built over the top of it, but a lot of the legacy
documentation has been written for older Js in mind first.

The basic intent, as with all unit testing, is to take some public element of your
codebase (a unit if you will), and ensure that it works the way you expect under
all input conditions. This can help us detect the cause of bugs early while
building, and when a change has created a problem later on.

Jest has a series of different key functions we can use to organise and run our
tests. Here's the main few:

When put together, normal, synchronous testing might have a structure like
this:

describe('group description', () => {});

// Describe is used to group logically similar test cases. You can
nest these as many times as needed. Expect() statements do not go
into describe() blocks directly.

it('test description', () => {});

test('test description', () => {});

// It and Test are aliases of the same thing. No preference for
either, apart from how you phrase your test descriptions.

// it('Returns a positive result when adding 2 positive numbers', ()
=> {})

// is preferred over

// test('If it returns a positibe result when adding 2 positive
numbers', () => {});

// As it's more obvious what the test is expecting when it fails.

expect();

// expect is the assertion clause that Jest uses. It has 2 basic
forms:

// 1: Matching a result with an expectation:

expect(myFunction('Hello', 'World!')).toBe('Hello World!');

// 2: Checking for an error

expect(() => { myFunction('Hellow', 'World') }).not.toThowError();

Generally speaking, less assertions per-test (ie, per it() statement) will give
more reliable results. Jest has been known to ignore failing expect()
statements if several (>5 maybe?) are stacked.

Writing good unit tests with descriptive labels also has the advantage of acting
as documentation for a specific service. Comments and requirements docs may
fail to be updated at some point, but tests must pass to be deployed, so it is
helpful to write more, smaller tests.

A more explicit form of Arrange/Act/Assert might look like so:

describe('testModule/Class', () => {

 describe('public function being tested', () => {

 it('specific behaviour being tested 1 - Eg "Adding 2 positive
integers gives the positive sum"', () => {

 expect(add(2,2)).toBe(4);

 });

 it('specific behaviour being tested 2 - Eg "Adding a positive and
negative integer gives the signed difference between their absolute
values"', () => {

 expect(add(2,-2)).toBe(0);

 });

 it('specific behaviour being tested 3 - Eg "Adding two negaive
integers gives the negative sum"', () => {

 expect(add(-2, -2)).toBe(-4);

 });

 });

});

Obviously this is a fairly contrived example, but your data may be a lot more
complex - ie data produced by faker or a very long string.

describe('testModule/Class', () => {

 describe('public function being tested', () => {

 it('specific behaviour being tested 1 - Eg "Adding 2 positive
integers gives the positive sum"', () => {

 const inputDataA = 2;

 const inputDataB = 2;

 const expectedOutputData = 4;

 const actualResult = add(inputDataA, inputDataB);

 expect(actualResult).toBe(expectedOutputData);

 });

 });

});

Jest Matchers

Basic Matchers

Jest has a fairly extensive list of basic matchers, found here: Expect · Jest
(jestjs.io)

A few main tripping points that you'll probably forget:

More advanced matchers

In some cases, we may want to use more advanced matching techniques when
asserting certain responses.

For example, it may be beneficial to ignore the exact timestamp generated by a
service response, but to simply assert that there is one.

We can used more advanced matchers (detailed here: The hidden power of Jest
matchers | by Boris | Medium) to test the interesting elements of the response.

Examples:

expect().toBe() // Checks if 2 objects are the same *instance*

expect().toEqual() // Checks if 2 objects have equal properties
(preferable I think)

expect().toBeCloseTo() // use this for floating-point equality
testing.

// Expecting a date, but without any care for the contents

const comment = createComment('test content', 'author@me.com');

expect(comment).toEqual({

 createdAt: expect.any(Date),

 content: 'test content',

 author: 'author@me.com'

});

https://jestjs.io/docs/expect
https://just-boris.medium.com/the-hidden-power-of-jest-matchers-f3d86d8101b0

// Partial match an object on specific keys

const user = prepareUserInfo('test-user');

// user object is something like ...

// {

// id: 123,

// name: 'test-user',

// profile: {...},

// passwordHash: '*****',

// whatever: {...}

// }

// ... but for the test we are interested only in name and id

expect(user).toEqual(expect.objectContaining({

 id: 123,

 name: 'test-user'

}));

// Checking a mocked service was called, formatting an input argument
exactly.

test('Sends an email with all the listed items present, separated by
newlines', async () => {

 const sendMail = jest.fn();

 const testLines = [

 `This is item 1`,

 `This is another item`,

 `Oh wow, yet another item!`,

];

 await manage.sendLinesEmail(testLines);

 expect(sendMail).toHaveBeenCalledTimes(1);

 expect(sendMail).toHaveBeenCalledWith({

 from: expect.any(string),

 to: expect.any(string),

 subject: expect.stringContaining('Preconfigured subject
line!'),

 text: expect.stringContaining(`\n${testLines.join('\n')}`),

 });

});

Repeated Tests with it.each()
Sometimes you will have a set of tests that all look very oddly similar, but use
ever so slightly different data and results. Not to worry, we can write the test
code once and insert our own data layout using the it.each() function. This
will also let us use the values in the test name.

Let's say we are testing the following function, since it's fairly simple.

Form 0: Individual Tests

The default way to write a test suite is to use individual it() statements for
each test.

This certainly works, but it violates the DRY principle - Don't Repeat Yourself.
We can do better!

// src/palindrome.ts

function isPalindrome(word: string): boolean {

 return word.toLowerCase() ===
word.toLowerCase().split('').reverse().join('');

}

// test/palindrome.test.ts

describe('isPalindrome - Form 0', () => {

 it('isPalindrome("Racecar") => true', () => {

 expect(isPalindrome('Racecar')).toEqual(true);

 });

 it('isPalindrome("Typewriter") => false', () => {

 expect(isPalindrome('Typewriter')).toEqual(false);

 });

 it('isPalindrome("rotor") =>', () => {

 expect(isPalindrome('rotor')).toEqual(true);

 });

});

Form 1: Input data as an array of Arrays

You can specify a test data suite as an "Array of Arrays" if you like, where each
inner array is equal to one test data set. Example:

This gives us a few nice qualities, and has some downsides.

Firstly, we write the test code once, and yet it runs multiple times!

We also can inject the parameter values from the test into the test name (using
%s formatting)!

It also means that adding more test cases is as easy as adding a new line to the
array.

Unfortunately, it has the downside of not really labelling the parameters. If
you're not so familiar with JS, it might not be obvious that 'Racecar' is being
inserted as testWord , but that's not a huge deal.

We do have another option:

Form 2: Input Data as Tagged Template Literals

Tagged Template literals is a concept in JS of using the backtick characters (`)
to format strings.

In this case we get to create a testing table as below:

// test/palindrome.test.ts

describe('isPalindrome - Form 1', () => {

 it.each([

 ['Racecar', true],

 ['TypeWriter', false],

 ['rotor', true],

])('isPalindrome("%s") => %s', (testWord, expectedResult) => {

 expect(isPalindrome(testWord)).toEqual(expectedResult);

 });

});

Note the differences between this and Form 1

it.each([])('', ()={}) is now called like it.each``('', () => {})
The parameters in the test name are now labelled, instead of using %s
The arguments to the test are now using ({ testWord, expectedResult
}) => {} instead of (testWord, expectedResult) => {}
The columns have labels!
Test values are wrapped in ${} . This is required, even for string
arguments.

If you're using ES Lint and Prettier, it will even clean up the table formatting for
you, so all of your columns are well aligned!

The final advantage is that the column order doesn't have to follow the
argument order in the test parameters - the column names just have to match.
ie: the following will also work!

// test/palindrome.test.ts

describe('isPalindrome - Form 2', () => {

 it.each`

 testWord | expectedResult

 ${'Racecar'} | ${true}

 ${'TypeWriter'} | ${false}

 ${'rotor'} | ${true}

 `('isPalindrome("$testWord") => $expectedResult', ({ testWord,
expectedResult }) => {

 expect(isPalindrome(testWord)).toEqual(expectedResult);

 });

});

describe('isPalindrome - Form 2', () => {

 it.each`

 expectedResult | testWord

 ${true} | ${'Racecar'}

 ${false} | ${'TypeWriter'}

 ${true} | ${'rotor'}

 `('isPalindrome("$testWord") => $expectedResult', ({ testWord,
expectedResult }) => {

 expect(isPalindrome(testWord)).toEqual(expectedResult);

 });

});

In any case, the results will give you tests that print out like this when you run
them:

Using it.each() may not be applicable for all test input data, for example if
sometimes the test should throw an Error .

Testing Services with Jest

Mock vs Stub vs Spy

Most testing reference documents will discuss some combination of Mocking,
Stubbing and Spying as a tool for testing services. However, terminology has
become muddled as more and more digital ink has been spilled, and
frameworks have been introduced.

Let's briefly define the above terms.

Mocking

Mocking is when you replace the implementation of a function, service, or other
coroutine with a no-op operation, and return null or 0. Often you will use this to
remove some external dependency like a HTTP call, or a send to a logging
framework. It can also be used to replace some expensive call with a no-op.

Technically speaking, mocks don't do any calculation or return any real
implementation/data. They're the dumbest possible unit, and we use them to
replace side-effects.

Stubbing

Stubbing is like mocking, but your replacement function might have a tiny
amount of brains to it, and might return actual, useful data. It simulates some
behaviour.

This article will use Mock and Stub interchangeably, as jest doesn't draw any
real distinction between them (apart from mocks are not given
implementations by default).

Spying

Spying, unlike mocking or stubbing, doesn't replace the default implementation
of a piece of code (at least, unless you tell it to). Generally you would use spying
to check that a method is being called with the right parameters, and the
correct number of times.

A Mock/Stub Example
Why would you want to mock or stub a function? In essence it comes down to
the structure of your unit test.

Typically, each test should be looking to verify one specific piece of behaviour,
eg: The SMS Service sends one SMS to each unique number in the
recipient list .

This description implies 2 things:

The service is responsible for de-duplicating the recipient list
This service needs to call its SMS Provider once for each list item after de-
duplication.

Realistically, we don't care who the SMS provider is, or how they are told to
send an SMS, those can be handled downstream or in integration testing.

We probably don't want to be sending real SMSes out in this case though! So
let's mock/stub the SMS Provider.

We may or may not care, in this tests case, what the response from the SMS
Provider call is. If we do, we would stub the function to return some reasonable
response, and if we don't, a mock is sufficient.

It can also be used to stand in for long running compute functions that we don't
necessarily want to run every time we run yarn test .

For example, if we have a file like this:

We may want to pretend to call sendSms instead of actually calling it (so we
don't send a real sms out or spam the sms provider with junk).

However, Good Unit Testing principles dictate that we should make sure that
sendSmsFromMe returns the correct response when sendSms gives us an error
or something, so let's just pretend we own sendSms instead.

Below is the code for the minimal mock of the function where we tell it what we
expect (I haven't tested this though whoops):

// /app/service/send-sms.ts

import { sendSms } from 'my_sms_library';

/**

 * Returns true when we successfully send an sms message

 */

export function sendSmsFromMe(destNumber: string, message: string):
boolean {

 // Maybe do some validation on the destinationNumber

 try {

 const smsResponse = sendSms({

 sendingNumber: 'myNumber',

 destinationNumber: destNumber,

 message: message,

 apiKey: '<some precofigured thing>'

 });

 if(smsResponse.code === 200) {

 return true;

 }

 } catch {

 return false;

 }

 return false;

}

We can also interrogate the mock to see how many times it was called, and with
what arguments.

It'd not be good for say, an SMS Api to accidentally get called multiple times to
send 1 SMS, so this can be helpful to test.

// /test/service/send-sms.test.ts

import { sendSms } from 'my_sms_library';

import { sendSmsFromMe } from '/app/service/send-sms.ts';

jest.mock('my_sms_library');

// You can also specify the mock type, but I haven't here.

const mockedSendSms = sendSms as jest.Mock;

describe('send-sms', () => {

 describe('sendSmsFromMe', () => {

 afterEach(() => {

 // Remove any lingering metadata about the mock

 mockedSendSms.clearMock();

 });

 it('Returns true when the service returns a 200 code', () => {

 mockedSendSms.mockResolvedValue({ code: 200, messageId:
'123445315' });

 expect(sendSmsFromMe('<my number>', 'Hello
stranger!')).toBe(true);

 });

 it('Returns false when the service returns something other than a
200 code', () => {

 mockedSendSms.mockResolvedValue({ code: 400, error: `That
didn't work!` });

 expect(sendSmsFromMe('<my number>', 'Hello
stranger!')).toBe(false);

 });

 it('Returns false when the service throws an error', () => {

 mockedSendSms.mockImplementation(() => {throw new Error(`Hey! I
don't like that!`)});

 expect(sendSmsFromMe('<my number>', 'Hello
stranger!')).toBe(false);

 });

 });

});

// /test/service/send-sms.test.ts

import { sendSms } from 'my_sms_library';

import { sendSmsFromMe } from '/app/service/send-sms.ts';

jest.mock('my_sms_library');

// You can also specify the mock type, but I haven't here.

const mockedSendSms = sendSms as jest.Mock;

describe('send-sms', () => {

 describe('sendSmsFromMe', () => {

 afterEach(() => {

 // Remove any lingering metadata about the mock

 mockedSendSms.clearMock();

 });

 it('Returns true when the service returns a 200 code', () => {

 mockedSendSms.mockResolvedValue({ code: 200, messageId:
'123445315' });

 expect(sendSmsFromMe('<my number>', 'Hello
stranger!')).toBe(true);

 });

 it('Only calls the Sms Library once per sms request', () => {

 mockedSendSms.mockResolvedValue({ code: 200, messageId:
'123445315' });

 sendSmsFromMe('<my number>', 'Hello stranger!');

 expect(mockedSendSms).toBeCalledTimes(1);

 });

 // You'd probably pre-configure these in some kind of config
file, and you might keep a dummy copy in your repo for this
particular test.

 it('Adds the api key and my number as the source!', () => {

 mockedSendSms.mockResolvedValue({ code: 200, messageId:
'123445315' });

 sendSmsFromMe('<my number>', 'Hello stranger!');

 expect(mockedSendSms).toBeCalledWith({

 sendingNumber: 'myNumber',

 destinationNumber: '<my number>',

 message: 'Hello stranger!',

 apiKey: '<some precofigured thing>'

 });

 });

 // ... other tests redacted

Don't forget you can use the scope of your containing block to reduce the
number of strings you have to retype, or the number of similar mocks you need
to set up!

 });

});

Mocking Singletons with Jest
Singletons are a common design pattern in a reasonable amount of software.
The typical case is that you have some configuration data that you want to use
in your service that you don't want to retrieve or parse each time the service is
created.

Unfortunately, since singletons give you a weird call pattern, mocking their
functions is a bit of a pain.

One solution is to refactor the singleton service to be provided via dependency
injection, but this does add some amount of structural overhead to your
application, may require learning a framework, and otherwise requires
justifying the work to actually implement.

We can, however, mock the singleton functions using Jest Spies.

Wait! I just said that spies don't change their target's behaviour!

Well... They can in Jest! Probably because they can in other mocking
frameworks, and Jest thinks it wants to be the testing framework to end all the
rest.

It's a good thing too, since the way that regular jest mocking works isn't really
conducive to dealing with class instances.

Take for example the following service and consumer, and let's say we want to
test the consumer works properly.

https://app.clickup.com/6943244/v/dc/6kwgc-1766/6kwgc-72782

// src/service/db-service.ts

export class DbService {

 private static instance: DbService;

 public static getInstance(): DbService {

 if (this.instance == null) {

 this.instance = new DbService();

 }

 return this.instance;

 }

 private connectionString: string;

 private constructor() {

 if (!process.env.DB_CONNECTION_STRING) {

 throw new Error('process.env.DB_CONNECTION_STRING not
set');

 }

 this.connectionString = process.env.DB_CONNECTION_STRING;

 }

 /** Retrieves the record with the given ID from the database */

 async getRecord(recordId: string): Promise<{ id: string; value:
string }> {

 // Actual implementation removed because we don't care, let's
return some random string for now.

 return { id: recordId, value: 'Hello World!' };

 }

}

// src/service/email-service.ts

/** Retrieves a given record from the DB and renders it as HTML */

export async function renderRecordAsHtml(recordId: string):
Promise<string> {

 try {

 const record = await
DbService.getInstance().getRecord(recordId);

 return `<!Doctype html><html><body><h1>${record.id}</h1>
<p>${record.value}</p></body></html>`;

 } catch (e) {

 throw new Error('Something went horribly wrong');

 }

}

// test/service/email-service.ts

describe('renderRecordAsHtml', () => {

 const mockRecordValue1 = 'Our own special record value!';

 let dbServiceInstance: DbService;

 let dbServiceSpy: jest.SpyInstance;

 beforeAll(() => {

 process.env.DB_CONNECTION_STRING = 'blah!';

 // Get the service *before* running the suite, as we need to
use the same class instance to mock it.

 dbServiceInstance = DbService.getInstance();

 // Now let's mock it

 dbServiceSpy = jest.spyOn(dbServiceInstance, 'getRecord');

 dbServiceSpy.mockImplementation((recordId: string) => {

 return { id: recordId, value: mockRecordValue1 };

 });

 });

 afterEach(() => {

 dbServiceSpy.mockClear();

 });

 afterAll(() => {

 delete process.env.DB_CONNECTION_STRING;

 jest.resetAllMocks();

 });

 // We use our default (set in beforeAll()) if we don't override
it

 it('Inserts the record ID into a H1 tag', async () => {

 const recordAsHtml = await renderRecordAsHtml('314');

expect(recordAsHtml).toEqual(expect.stringContaining(`<h1>314</h1>`));

 });

 it('Inserts the value inside a paragraph tag', async () => {

 const recordAsHtml = await renderRecordAsHtml('314');

expect(recordAsHtml).toEqual(expect.stringContaining(`<p>${mockRecordV
</p>`));

 });

 // Or we can override it for this specific test set!

 it('Inserts the record ID into a H1 tag after overriding the

The above will correctly mock the implementation of the DbService , but we
still need to know the implementation details of DbService.getInstance() .

implementation', async () => {

 const mockIdOnce = 'This is a fake ID!';

 const mockRecordOnce = 'This is our own record :p';

 dbServiceSpy.mockImplementationOnce(() => {

 return { id: mockIdOnce, value: mockRecordOnce };

 });

 const recordAsHtml = await renderRecordAsHtml('314');

expect(recordAsHtml).toEqual(expect.stringContaining(`<h1>${mockIdOnce
</h1>`));

 });

 // But this one still uses the default implementation!

 it('Inserts the value inside a paragraph tag', async () => {

 const recordAsHtml = await renderRecordAsHtml('314');

expect(recordAsHtml).toEqual(expect.stringContaining(`<p>${mockRecordV
</p>`));

 });

 // We can even make it throw an error!

 it('Throws ~Something went horribly wrong~ if the record is not
found', async () => {

 dbServiceSpy.mockImplementationOnce(() => {

 throw new Error('Heck!');

 });

 try {

 const recordAsHtml = await renderRecordAsHtml('314');

 fail('Expected to throw error "Something went horribly
wrong", but did not');

 } catch (e) {

 expect(e).not.toBeNull();

 expect(e).toEqual(new Error('Something went horribly
wrong'));

 expect(e).not.toEqual(new Error('Heck!'));

 }

 });

});

In particular, if you are testing multiple functions inside email-service.ts ,
you will need to allow a singleton reset so you aren't sharing state between
tests, or structure your tests such that all the mocking is done before all the
suites run. This is pretty annoying IMO.

Spying on functions with Jest
Okay, so we can see the obvious use case for mocking - we don't want to call an
AWS Service for example, but maybe we are testing something that handles
some data it might return.

But when would we use spying? And how do we call it in Jest?

Generally, spying is used when we don't want to change the implementation of
a class, but we do care about how it's being used.

Here's some generic examples where you'd maybe want to use a spy over a
mock:

I need to test my http client service is only sending one request when I call
it, and is not meaningfully modifying the responses. I'd use a Spy + a tool
like Nock to create generic test cases.

When testing the consumers of this service, I will write a stub for this service.

I have some publisher/subscriber model, and I really need to make sure
the subscriber is receiving notifications in specific circumstances (ie: I have
a checkbox checked).

I don't want to mock this subscriber particularly, but I need to verify that the
subscription and unsubscription is actually working as I intended.

Mocking RestAPIs with Nock
nock/nock: HTTP server mocking and expectations library for Node.js
(github.com)

Nock is a framework that allows the tester to mock restAPI responses, in HTTP
format even.

This allows us to test our code against diverse responses, without the need for
an integration server.

It can also let us get a little creative with our validation code, and ensure that
we are handling unexpected responses correctly.

For example, the axios library provides async http calls to other services, but
itself as a service can be hard to mock correctly, as its error handling can be
somewhat subtle.

nock allows us to verify our code against what axios would actually do in a
specific reaponse case (say, a 404 error), as opposed to us guessing based off
their documents.

Nock automatically converts header keys in requests to lower case. In most
cases, API gateways should also be case insensitive, but be sure to check this
before relying on Nock to test your request headers.

For example, the following header arrangements should be equivalent on most
HTTP servers:

{

 "Authorization":"MyAuthKey",

 "accept":"application/json",

 "deviceId":"12345"

}

{

 "authorization":"MyAuthKey",

 "accept":"application/json",

 "deviceid":"12345"

}

https://github.com/nock/nock

However some specific server implementations may not be the case. Using
Nock to test your header arrangements are cased correctly may not be a
suitable test in this case.

The following describes a possible test pattern using Nock to control axios calls:

import nock from 'nock';

import * as AuthService from '/app/service/authentication-service';

import { CustomError } from '/app/service/error';

import axios from 'axios';

// Make sure Axios will work with Nock

axios.defaults.adapter = require('axios/lib/adapters/http');

describe('authenticate', () => {

 const authDomainRoot = 'https://example.com';

 const authUrlPath = '/auth';

 afterEach(() => {

 // Don't forget to reset any Nock mocks after each test
(since we are mocking per-test)

 nock.cleanAll();

 });

 it('Throws a specific error if the Auth API returns 400', async
() => {

 const scope =
nock(authDomainRoot).post(authUrlPath).reply(400, {});

 try {

 const response = await
AuthService.authenticate('thisIsAnAuthCode', 'thisIsNotAJwt');

 console.log(response);

 fail('Expected to throw CustomError but did not');

 } catch (e) {

 if (!(e instanceof CustomError)) {

 fail('Expected to throw CustomError, but threw
something else');

 } else {

 const specificCustomErr = new CustomError(400, '07',
`Something went wrong, please try again`);

expect(e.errorCode).toEqual(specificCustomErr.errorCode);

 expect(e.message).toEqual(specificCustomErr.message);

expect(e.httpCode).toEqual(specificCustomErr.httpCode);

 }

 }

 });

 it('Throws a specific error if the Auth API returns 500', async
() => {

 const scope =

nock(authDomainRoot).post(authUrlPath).reply(500, {});

 try {

 const response = await
AuthService.authenticate('thisIsAnAuthCode', 'thisIsNotAJwt');

 console.log(response);

 fail('Expected to throw CustomError but did not');

 } catch (e) {

 if (!(e instanceof CustomError)) {

 fail('Expected to throw CustomError, but threw
something else');

 } else {

 const specificCustomErr = new CustomError(500, '10',
`Something went wrong, please try again`);

expect(e.errorCode).toEqual(specificCustomErr.errorCode);

 expect(e.message).toEqual(specificCustomErr.message);

expect(e.httpCode).toEqual(specificCustomErr.httpCode);

 }

 }

 });

 it('Returns the same tokens provided by the Auth API', async ()
=> {

 const mockAccessToken = 'ThisIsAnAccessToken';

 const mockRefreshToken = 'ThisIsARefreshToken';

 const scope = nock(authDomainRoot)

 .post(authUrlPath)

 .reply(200, { access_token: mockAccessToken,
refresh_token: mockRefreshToken });

 const response = await
AuthService.authenticate('thisIsAnAuthCode', 'thisIsNotAJwt');

 expect(response.accessToken).toEqual(mockAccessToken);

 expect(response.refreshToken).toEqual(mockRefreshToken);

 });

 it('The provided authCode is present in the body', async () => {

 const mockAccessToken = 'ThisIsAnAccessToken';

 const mockRefreshToken = 'ThisIsARefreshToken';

 const mockAuthCode = 'thisIsAnAuthCode';

 let caughtBody;

 const scope = nock(authDomainRoot)

 .post(authUrlPath)

 .reply(200, function (uri, reqBody) {

 caughtBody = reqBody;

 return { access_token: mockAccessToken,

refresh_token: mockRefreshToken };

 });

 await AuthService.authenticate(mockAuthCode,
'thisIsNotAJwt');

 const bodyAsParams = new URLSearchParams(caughtBody);

 expect(bodyAsParams.get('code')).toEqual(mockAuthCode);

expect(bodyAsParams.get('grant_type')).toEqual('authorization_code');

 });

 it('The provided clientAssertion is present in the body', async
() => {

 const mockAccessToken = 'ThisIsAnAccessToken';

 const mockRefreshToken = 'ThisIsARefreshToken';

 const mockJwt = 'thisIsNotAJwt';

 let caughtBody;

 const scope = nock(authDomainRoot)

 .post(authUrlPath)

 .reply(200, function (uri, reqBody) {

 caughtBody = reqBody;

 return { access_token: mockAccessToken,
refresh_token: mockRefreshToken };

 });

 await AuthService.authenticate('thisIsAnAuthCode', mockJwt);

 const bodyAsParams = new URLSearchParams(caughtBody);

expect(bodyAsParams.get('client_assertion')).toEqual(mockJwt);

 expect(bodyAsParams.get('client_assertion_type')).toEqual(

 'urn:ietf:params:oauth:client-assertion-type:jwt-bearer'

);

 });

});

Mocking AWS Services with aws-
sdk-mock
aws-sdk-mock gives the user a little more control over mocking the Aws SDK.
Specifically, it overrides specific functions of the SDK with your own
implementation, preserving the type contract.

Note: `aws-sdk-mock` is built for the 'v2' version of the `aws-sdk`.

For v3 (ie the one that uses `@aws-sdk/client-`), use https://github.com/m-
radzikowski/aws-sdk-client-mock

The standard pattern for mocking with aws-sdk-mock and jest looks like so:

https://github.com/m-radzikowski/aws-sdk-client-mock

import AWSMock from 'aws-sdk-mock';

import AWS from 'aws-sdk';

import { getFile } from 'app/service/s3-service'; // This is our
wrapper service for S3

import type { GetObjectOutput, GetObjectRequest } from 'aws-
sdk/clients/s3';

describe('s3-service', () => {

 describe('getFile', () => {

 // Create a Jest Mock Function that we can query about calls
later.

 let mockGetObject: jest.Mock<GetObjectOutput, [req:
GetObjectRequest]>;

 beforeAll(() => {

 // Write an implementation for our Jest Mock

 mockGetObject = jest.fn((req: GetObjectRequest):
GetObjectOutput => {

 return { Body: 'Test Body', VersionId: 'V1' };

 });

 // Note that we need to set the AWS SDK instance before
we try to mock it.

 AWSMock.setSDKInstance(AWS);

 // Overwrite S3.getObject() with AWSMock.

 // Note that we use the `callback()` function, leaving
the Error side undefined.

 AWSMock.mock('S3', 'getObject', (params, callback) => {

 callback(undefined, mockGetObject(params));

 });

 });

 afterAll(() => {

 // Restore S3's normal functionality

 AWSMock.restore('S3', 'getObject');

 // Clear out the Jest Mock as well, just to be safe

 jest.resetAllMocks();

 });

 afterEach(() => {

 // Clear data from the mock, ie how many times it was
called, etc

 mockGetObject.mockClear();

 });

 // Test that our wrapper is returning what we told it to from

This pattern allows us to modify the return of an AWS SDK function individually,
but also use a standard return in most cases.

Note that the AWS SDK class and method are described by strings, which are
equivalent to the name of the function you are overriding in your code. aws-
sdk-mock should warn you if you are overriding it incorrectly.

the mock

 it('Returns the requested file if the file exists', async ()
=> {

 const awsResp = await getFile('testBucket',
'testFolder/testFile.txt');

 expect(awsResp).toEqual({ Body: 'Test Body', VersionId:
'V1' });

 });

 // Test that we aren't calling S3 more than we have to

 it('Calls the getObject function once per request', async ()
=> {

 await getFile('testBucket', 'testFolder/testFile.txt');

 expect(mockGetObject).toHaveBeenCalledTimes(1);

 });

 });

});

Mocking AWS Errors without aws-
sdk-mock
When testing unit behaviour in the event of an error, it can be helpful to mock
when AWS returns some kind of error. The aws-sdk typically throws an
AWSError object when it fails (as a promise rejection).

Unfortunately, this data type is not something jest will typically handle in its
expect().toThrow() matching hook.

This pattern is known to work if there is a wrapper typescript service around
the AWS SDK service (in the below example as /app/service/s3-service.ts),
but could potentially work with aws-sdk-mock as well.

We can use the following pattern to mock an error response. This sample uses
S3.

// File: /app/service/s3-service.ts

import { S3 } from 'aws-sdk';

/**

 * Retrieves a file from an S3 Bucket as an S3 Object

 * @param Bucket The S3 bucket to fetch from

 * @param Key The name + path of the file to fetch

 * @returns The file as an S3 Object Promise

 */

export const getFile = async (Bucket: string, Key: string) =>

 new S3()

 .getObject({

 Bucket,

 Key,

 })

 .promise();

// File: /app/service/s3-wrapper-service.ts

import * as s3 from './s3-service';

import type { PromiseResult } from 'aws-sdk/lib/request';

import type { AWSError, S3 } from 'aws-sdk';

/**

 * Fetches the contents of a file from an S3 bucket as a string.
Returns an empty string if the file doesn't exist. Throws an {@link
AWSError} on any other failure.

 * @param bucketName The name of the S3 bucket to read from

 * @param key The file name + path to read.

 * @returns The body of the file as a string. If the file doesn't
exist, returns an empty string. If there is another error, throws it.

 */

export async function fetchFromS3(bucketName: string, key: string):
Promise<string> {

 let file: PromiseResult<S3.GetObjectOutput, AWSError>;

 try {

 file = await s3.getFile(bucketName, key);

 } catch (e) {

 const error = e as AWSError;

 // If no files exists - just treat it as an empty file

 if (error.code === 'NoSuchKey') {

 return '';

 }

 throw e;

 }

 if (!file.Body) {

 // If the file doesn't exist - just treat it as an empty one

 return '';

 }

 return file.Body.toString();

}

Note the try/fail/catch block in the second it() statement.

// File: /test/s3-wrapper-service.test.ts

import * as s3 from 'app/service/s3-service';

import { fetchFromS3 } from 'app/service/s3-wrapper-service';

import type { AWSError } from 'aws-sdk';

jest.mock('app/service/s3-service');

describe('fetchFromS3', () => {

 it('Returns an empty string if S3 returned `NoSuchKey` as an
error', async () => {

 const noSuchKeyError: AWSError = {

 code: 'NoSuchKey',

 message: 'NoSuchKey error',

 name: 'No Such Key error or something',

 time: new Date(),

 };

 (s3.getFile as jest.Mock).mockRejectedValue(noSuchKeyError);

 const result = await
fetchFromS3(process.env.DH_MIRROR_BUCKET!, 'testfile.csv');

 expect(result).toEqual('');

 });

 it("Throws S3 errors that aren't `NoSuchKey`", async () => {

 const otherError: AWSError = {

 code: 'ServiceUnavailable',

 message: 'need more kfc 21 piece buckets',

 name: 'ServiceUnavailable',

 time: new Date(),

 };

 (s3.getFile as jest.Mock).mockRejectedValue(otherError);

 try {

 await fetchFromS3('test-bucket', 'current.json');

 fail('Expected to throw but did not');

 } catch (e) {

 expect(s3.getFile).toBeCalledWith('test-bucket',
'current.json');

 expect(e).toBe(otherError);

 }

 });

});

Mocking AWS PromiseResult
Occasionally, there is the use case in the AWS SDK to inspect the raw
$response object that AWS returns inside some SDK Result. This contains
errors and the raw HTTP response object.

Unfortunately, doing this in application code means that you also need to mock
it in your AWS Mocks.

Below is an example of this working correctly for KMS:

// /test/mocks/aws-result.ts

import AWS from 'aws-sdk';

import { PromiseResult } from 'aws-sdk/lib/request';

/** This produces a valid AWS PromiseResult that a mock funtion could
return */

export function awsSuccessPromiseResult<T>(resp: T): PromiseResult<T,
AWS.AWSError> {

 return {

 ...resp,

 $response: {

 data: resp,

 hasNextPage: () => {

 return false;

 },

 requestId: '',

 redirectCount: 0,

 retryCount: 0,

 nextPage: () => {},

 error: undefined,

 httpResponse: {

 body: '',

 headers: {},

 statusCode: 200,

 statusMessage: 'OK',

 streaming: false,

 createUnbufferedStream: () => {

 return {};

 },

 },

 },

 };

}

/** This produces a valid AWS Error PromiseResult response */

export function awsErrorPromiseResult(): PromiseResult<any,
AWS.AWSError> {

 const otherError: AWS.AWSError = {

 code: 'ServiceUnavailable',

 message: 'need more kfc 21 piece buckets',

 name: 'ServiceUnavailable',

 time: new Date(),

 };

 return {

 $response: {

 data: undefined,

 hasNextPage: () => {

 return false;

 },

 requestId: '',

 redirectCount: 0,

 retryCount: 0,

 nextPage: () => {},

 error: otherError,

 httpResponse: {

 body: '',

 headers: {},

 statusCode: 200,

 statusMessage: 'OK',

 streaming: false,

 createUnbufferedStream: () => {

 return {};

 },

 },

 },

 };

}

// /test/jwt-service.test.ts

import jwt from 'jsonwebtoken';

import AWSMock from 'aws-sdk-mock';

import AWS from 'aws-sdk';

import KMS from 'aws-sdk/clients/kms';

import { PromiseResult } from 'aws-sdk/lib/request';

import { awsSuccessPromiseResult } from './mocks/aws-results';

describe('JwtService', () => {

 let mockSign;

 beforeAll(() => {

 mockSign = jest.fn((req: KMS.SignRequest):
PromiseResult<KMS.SignResponse, AWS.AWSError> => {

 const resp = {

 KeyId: req.KeyId,

 SigningAlgorithm: req.SigningAlgorithm,

 Signature:
'ThisSignatureVerifiesThatTheJwtIsToooootallyLegit',

 };

 return awsSuccessPromiseResult(resp);

 });

 // Overwriting KMS.sign()

 AWSMock.setSDKInstance(AWS);

 AWSMock.mock('KMS', 'sign', (params, callback) => {

 callback(undefined, mockSign(params));

 });

 });

 afterAll(() => {

 // Restore KMS

 AWSMock.restore('KMS', 'sign');

 jest.resetAllMocks();

 });

 describe('signJwt', () => {

 afterEach(() => {

 mockSign.mockClear();

 });

 it('Mocks the signature correctly', async () => {

 const response = await new KMS().sign({

 Message: '{"recordA":"A very transgender value", ...
<other JWT stuff>}',

 KeyId: '99999',

 SigningAlgorithm: 'RSASSA_PKCS1_V1_5_SHA_256',

 MessageType: 'RAW',

 })

 .promise();

 console.log(response);

 console.log(JSON.stringify(jwt.decode(response)));

 expect(true).toBeTruthy();

 });

 });

});

Using Jest with VSCode
The main Jest plugin for VSCode is here: Jest - Visual Studio Marketplace

There is a config setting to turn off running tests automatically on save - add
the following line to your settings.json file:

The plugin is known to not work so well with yarn workspaces. In this case, it
may be easier to simply use the CLI commands:

Jest CLI Options · Jest (jestjs.io)

"jest.autoRun": "off",

https://marketplace.visualstudio.com/items?itemName=Orta.vscode-jest
https://jestjs.io/docs/cli

Hacks

Boolean logic for Expect statements

We can write a fairly comprehensive test by using multiple expect statements
in one test. ie:

This gives us the equivalent of a logical AND statement - if anything fails, the
whole test fails.

Jest, however, doesn't support logical OR on first inspection, ie:

This makes sense somewhat, a unit really shouldn't have 2 equally valid outputs
for 1 input.

However occasionally we might test something where it is helpful - like testing a
mock where the call order doesn't matter.

In this case we can wrap the expect in a try/catch , and it will take either
option. Example:

it('Does 2 things', () => {

 expect(thingOne).toBeTruthy();

 expect(thingTwo).toBeTruthy();

});

it('Does one of 2 things', () => {

 expect(result).toBe(thingOne jest.or thingTwo);

});

In this case, only 1 of the expect statements is required for the test to pass.

it('Calls the mock service with one of 2 arg sets', () => {

 try{

 expect(mockService).toBeCalledWith({ argA: 'myArgA', argB:
'myArgB' });

 } catch {

 expect(mockService).toBeCalledWith({ argA: 'yourArgA', argB:
'yourArgB' });

 }

});

Samples

Expressiveness

Here is a very expressive sample for a date/time validation function.

Using such detailed samples allows us to find the exact places and edge cases
that a service might fail if adjusted.

In reality, I'd probably use an it.each() expression to write this, but it gives us
a very well-described function anyhow.

file:///C:/Users/lhedt/Desktop/Projects/TutorialDocs/mdbook-collection/docs/jest-book/book/html/jest/repeated_tests.html

describe('validateDateTimeString', () => {

 describe('Date strings', () => {

 it('Accepts a well formatted string', () => {

 expect(validateDateTimeString('01/01/2021',
'dd/MM/yyyy')).toBeTruthy();

 });

 it("Rejects a string that requires leading zeroes, but
doesn't supply them", () => {

 expect(validateDateTimeString('1/1/2021',
'dd/MM/yyyy')).toBeFalsy();

 });

 it('Rejects a date where the year position is not where it is
expected', () => {

 expect(validateDateTimeString('2021/01/01',
'dd/MM/yyyy')).toBeFalsy();

 });

 it('Rejects a date where the day value is larger than can be
in any month', () => {

 expect(validateDateTimeString('90/01/2021',
'dd/MM/yyyy')).toBeFalsy();

 });

 it('Rejects a date where the month value is larger than 12',
() => {

 expect(validateDateTimeString('01/90/2021',
'dd/MM/yyyy')).toBeFalsy();

 });

 it('Rejects a date where the year value is longer than the
required four digits', () => {

 expect(validateDateTimeString('01/01/12021',
'dd/MM/yyyy')).toBeFalsy();

 });

 it('Rejects a date where the day value (40) is larger than
can be for a given month', () => {

 expect(validateDateTimeString('40/08/2021',
'dd/MM/yyyy')).toBeFalsy();

 });

 it('Rejects a date where the day value is in the months
column (ie - American formatting)', () => {

 expect(validateDateTimeString('04/30/2021',
'dd/MM/yyyy')).toBeFalsy();

 });

 it('Accepts a date where the day value (30) is within the
given month (April)', () => {

 expect(validateDateTimeString('30/04/2021',
'dd/MM/yyyy')).toBeTruthy();

 });

 it('Rejects a date where the day value (31) is larger than
can be for a given month (April)', () => {

 expect(validateDateTimeString('31/04/2021',
'dd/MM/yyyy')).toBeFalsy();

 });

 it('Accepts a date where the day value (31) is within the
given month (January)', () => {

 expect(validateDateTimeString('31/01/2021',
'dd/MM/yyyy')).toBeTruthy();

 });

 it('Rejects a date where the day value (32) is larger than
can be for a given month (January)', () => {

 expect(validateDateTimeString('32/01/2021',
'dd/MM/yyyy')).toBeFalsy();

 });

 it('Accepts a date where the day value (28) exists for the
given February (2022)', () => {

 expect(validateDateTimeString('28/02/2022',
'dd/MM/yyyy')).toBeTruthy();

 });

 it('Rejects a date where the day value (29) does not exist
for the given February (2022)', () => {

 expect(validateDateTimeString('29/02/2022',
'dd/MM/yyyy')).toBeFalsy();

 });

 it('Accepts a date where the day value (29) exists for the
given February (2024)', () => {

 expect(validateDateTimeString('29/02/2024',
'dd/MM/yyyy')).toBeTruthy();

 });

 it('Rejects a date where the day value (30) does not exist
for the given February (2024)', () => {

 expect(validateDateTimeString('30/02/2024',
'dd/MM/yyyy')).toBeFalsy();

 });

 it('Accepts a date where the day value (28) exists for the
given February (2100)', () => {

 expect(validateDateTimeString('28/02/2100',
'dd/MM/yyyy')).toBeTruthy();

 });

 it('Rejects a date where the day value (29) does not exist
for the given February (2100)', () => {

 expect(validateDateTimeString('29/02/2100',
'dd/MM/yyyy')).toBeFalsy();

 });

 it('Rejects a date that is given in English instead of the
required date string', () => {

 expect(validateDateTimeString('1st of January 2021',
'dd/MM/yyyy')).toBeFalsy();

 });

 });

 describe('Time strings', () => {

 it('Accepts a time string that is formatted correctly for the
given format', () => {

 expect(validateDateTimeString('01:01:01',
'HH:mm:ss')).toBeTruthy();

 });

 it('Rejects a time with an hour value that is too high', ()
=> {

 expect(validateDateTimeString('60:01:01',
'HH:mm:ss')).toBeFalsy();

 });

 it('Rejects a time with a minute value that is too high', ()
=> {

 expect(validateDateTimeString('01:90:01',
'HH:mm:ss')).toBeFalsy();

 });

 it('Rejects a time with a second value that is too high', ()
=> {

 expect(validateDateTimeString('01:01:90',
'HH:mm:ss')).toBeFalsy();

 });

 it('Rejects a time with a value written in english, instead
of the required date format', () => {

 expect(validateDateTimeString('midnight',
'HH:mm:ss')).toBeFalsy();

 });

 });

});

